碼垛機械手設計ABOUT MODERN INDUSTRIAL MANIPULATORRobot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. Modern industrial robots are true marvels of engineering. A robot the size of a person can easily carry a load over one hundred pounds and move it very quickly with a repeatability of 0.006inches. Furthermore these robots can do that 24hours a day for years on end with no failures whatsoever. Though they are reprogrammable, in many applications they are programmed once and then repeat that exact same task for years.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With he rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly; with the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission ratio. Both of the transmission mechanisms have a characteristic of compact structure. The design of drive system often is limited by the environment condition and the factor of cost and technical lever. The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system. In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality. On this basis, the analysis of stepping motor in power calculating and style selecting is also given. The analysis of kinematics and dynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Current industrial approaches to robot arm control treat each joint of the robot arm as a simple joint servomechanism. The servomechanism approach models the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. These changes in the parameters of the controlled system sometimes are significant enough to render conventional feedback control strategies ineffective. The result is reduced servo response speed and damping, limiting the precision and speed of the end-effecter and making it appropriate only for limited-precision tasks. Manipulators controlled in this manner move at slow speeds with unnecessary vibrations. Any significant performance gain in this and other areas of robot arm control require the consideration of more efficient dynamic models, sophisticated control approaches, and the use of dedicated computer architectures and parallel processing techniques.In the industrial production and other fields, people often endangered by such factors as high temperature, corrode, poisonous gas and so forth at work, which have increased labor intensity and even jeopardized the life sometimes. The corresponding problems are solved since the robot arm comes out. The arms can catch, put and carry objects, and its movements are flexible and diversified. It applies to medium and small-scale automated production in which production varieties can be switched. And it is widely used on soft automatic line. The robot arms are generally made by withstand high temperatures, resist corrosion of materials to adapt to the harsh environment. So they reduced the labor intensity of the workers significantly and raised work efficiency. The robot arm is an important component of industrial robot, and it can be called industrial robots on many occasions. Industrial robot is set machinery, electronics, control, computers, sensors, artificial intelligence and other advanced technologies in the integration of multidisciplinary important modern manufacturing equipment. Widely using industrial robots, not only can improve product quality and production, but also is of great significance for physical security protection, improvement of the environment for labor, reducing labor intensity, improvement of labor productivity, raw material consumption savings and lowering production costs.There are such mechanical components as ball footbridge, slides, air control mechanical hand and so on in the design. A programmable controller, a programming device, stepping motors, stepping motors drives, direct current motors, sensors, switch power supply, an electromagnetism valve and control desk are used in electrical connection. 關于現代工業機械手文章出處1994-2009 China Academic Joumal Electronic Publishing House機器人是典型的機電一體化裝置,它綜合運用了機械與精密機械、微電子與計算機、自動控制與驅動、傳感器與信息處理以及人工智能等多學科的最新研究成果,隨著經濟技術的發展和各行各業對自動化程度要求的提高,機器人技術得到了迅速發展,出現了各種各樣的機器人產品。現代工業機器人是人類真正的奇跡工程。一個像人那么大的機器人可以輕松地抬起超過一百磅并可以在誤差 0.006 英寸內重復運動。更重要的是這些機器人可以每天 24 小時不停止地工作。在許多應用中他們是通過編程控制的,但是他們一旦編程一次,他們可以重復地做同一個工作許多年。機器人產品的實用化,既解決了許多單靠人力難以解決的實際問題,又促進了工業自動化的進程。目前,由于機器人的研制和開發涉及多方面的技術,系統結構復雜,開發和研制的成本普遍較高,在某種程度上限制了該項技術的廣泛應用,因此,研制經濟型、實用化、高可靠性機器人系統具有廣泛的社會現實意義和經濟價值。由于我國經濟建設和城市化的快速發展,城市污染排水放量增長很快,污水處理已經擺在了人們的議事日程上來。隨著科學技術的發展和人類知識水平的提高,人們越來越認識到污水處理的重要性和迫切性,科學家和研究人員發現塑料制品在水中時用于污水處理的很有效地污泥菌群的附著體。塑料制品的大量需求,使得塑料制品生產的自動化和高效率要求成為經濟發展的必然。本文結合塑料一次擠出成型機和塑料抓取機械手的研制過程中出現的問題,綜述近幾年機器人技術研究和發展的狀況,在從分發揮機、電、軟、硬件各自特點和優勢互補的基礎上,對物料抓取機械手整體機械結構、傳動系統、驅動裝置和控制系統進行了分析和設計,提出了一套經濟型設計方案。采用直角坐標和關節坐標相結合的框架式機械結構形式,這種方式能夠提高系統的穩定性和操作靈活性。傳動裝置的作用是將驅動元件的動力傳遞給機器人機械手相應的執行機構,以實現各種必要的運動,傳動方式上采用結構緊湊、傳動比答得蝸輪蝸桿傳動和將旋轉運動轉換為直線運動的螺旋傳動。機械手驅動系統的設計往往受到作業環境條件的限制,同時也要考慮價格因素的影響以及能夠達到的技術水平。由于步進電機能都直接接收數字量,響應速度快而且工作可靠并無累計誤差,常用作數字控制系統驅動機構的動力元件,因此,在驅動裝置中采用由步進電機構成的環控制方式,這種方式技能滿足控制精度的要求,又能達到經濟型、實用化目的。目前的工業機械臂控制將每一個機械臂的聯合看做一個簡單的聯合伺服。伺服方法不能從分地模仿不同的動力學機械手,因為它忽略了機械手整體的運動和配置。這些控制系統的參數的變化有時是足夠重要,以至于使常規的反饋控制方法失效。其結果是減少了伺服相應的速度和阻尼,限制了京都和最終效應的速度,使系統僅適用于有限精度的工作。機械手以這種方式控制速度降低而沒有不必要的震動。任何在這一領域和其它領域的機械臂性能增益要求更有效率的動態模型、精密的控制方法、專門的計算機架構和并行處理技術。在工業生產和其它領域內,由于工作的需要,人們經常受到高溫、腐蝕及有毒氣體等因素的危害,增加了工人的勞動強度,甚至于危及生命。自從機械手問世以來,相應的各種難題迎刃而解。機械手可在空間抓、放、搬運物體,動作靈活多樣,適用于可變換生產品種的中、小批量自動化生產,廣泛應用于柔性自動線。機械手一般由耐高溫,抗腐蝕的材料制成,以適應現場惡劣環境,大大降低了工人的勞動強度,提高了工作效率。機械手是工業機器人的重要組成部分,在很多情況下它就可以稱為工業機器人。工業機器人集機械、電子、控制、計算機、傳感器、人工智能等多學科先進技術于一體化的現代制造業重要的自動化裝備。廣泛采用工業機器人,不僅可以提高產品的質量與產量,而且對保障人身安全,改善勞動環境,減輕勞動強度,提高勞動生產率,節約原材料消耗以及降低生產成本,有著十分重要的意義。RobotsThe industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society .The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off .The basic terminology of robotic systems is introduced in the following 1. A robot is a reprogrammable , multifunctional manipulator designed to move parts , materials , tools , or special devices through variable programmed motions for the performance of a variety of different task . This basic definition leads to other definitions , presented in the following paragraphs , that give a complete picture of a robotic system . 2. Preprogrammed locations are paths that the robot must follow to accomplish work . At some of these locations , the robot will stop and perform some operation , such as assembly of parts , spray painting , or welding . These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous operation . Furthermore , these preprogrammed locations , as well as other program data , can be changed later as the work requirements change . Thus , with regard to this programming feature , an industrial robot is very much like a computer , where data can be stored and later recalled and edited .3. The manipulator is the arm of the robot . It allows the robot to bend , reach , and twist . This movement is provided by the manipulator’s axes , also called the degrees of freedom of the robot . A robot can have from 3 to 16 axes . The term degrees of freedom of freedom will always relate to the number of axes found on a robot .4. The tooling and grippers are not part of the robotic system itself ; rather , they are attachments that fit on the end of the robot’s arm . These attachments connected to the end of the robot’s arm allow the robot to lift parts , spot-weld , paint , arc-weld , drill , deburr , and do a variety of tasks , depending on what is required of the robot .5. The robotic system can also control the work cell of the operating robot . the work cell of the robot is the total environment in which the robot must perform its task . Included within this cell may be the controller , the robot manipulator , a work table , safety features , or a conveyor . All the equipment that is required in order for the robot to do its job is included in the work cell . In addition , signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts , pick up parts , or unload parts to a conveyor .The robotic system has three basic components the manipulator , the controller , and the power source .A . Manipulator The manipulator , which does the physical work of the robotic system , consists of two sections the mechanical section and the attached appendage . The manipulator also has a base to which the appendages are attached . Fig.1 illustrates the connection of the base and the appendage of a robot .The base of the manipulator is usually fixed to the floor of the work area . Sometimes , though , the base may be movable . In this case , the base is attached to either a rail or a track , allowing the manipulator to be moved from one location to another .As mentioned previously , the appendage extends from the base of the robot . The appendage is the arm of the robot . It can be either a straight , movable arm or a jointed arm . the jointed arm is also known as an articulated arm .The appendages of the robot manipulator give the manipulator its various axes of motion . These axes are attached to a fixed base , which , in turn , is secured to a mounting . This mounting ensures that the manipulator will remain in one location。At the end of the arm , a wrist is connected . The wrist is made up of additional axes and a wrist flange . The wrist flange allows the robot user to connect different tooling to the wrist for different jobs . The manipulator’s axes allow it to perform work within a certain area . This area is called the work cell of the robot , and its size corresponds to the size of the manipulator . Fig.2 illustrates the work cell of a typical assembly robot . As the robot’s physical size increases , the size of the work cell must also increase .The movement of the manipulator is controlled by actuators , or drive systems . The actuators , or drive system , allows the various axes to move within the work cell . The drive system can use electric , hydraulic , or pneumatic power . The energy developed by the drive system is converted to mechanical power by various mechanical drive systems .The drive systems are coupled through mechanical linkages .These linkages, in turn , drive the different axes of the robot . The mechanical linkages may be composed of chains , gears ,and ball screws.B. ControllerThe controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, control peripheral devices, and communicates with computers within the plant for constant updates in production The controllers is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendent. This information is stored in the memory of the controller for later recall. The controller stores all program data of the robotic system. It can store several different programs, and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system. The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. That is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the robot’s wrist. The controller also has the job of communicating with the different plant computers . The communication link establishes the robot as part of a computer-assisted manufacturing CAM system.As the basic definition stated , the robot is a reprogrammable , multifunctional manipulator . Therefore , the controller must contain some type of memory storage . The microprocessor-based systems operate in conjunction with solid-state memory devices . These memory devices may be magnetic bubbles , random-access memory , floppy disks , or magnetic tape . Each memory storage device stores program information for later recall or for editing .C. Power supplyThe power supply is the unit that supplies power to the controller and the manipulator . Two types of power are delivered to the robotic system . One type of power is the AC power for operation of the controller . The other type of power is used for driving the various axes of the manipulator . For example , if the robot manipulator id controlled by hydraulic or pneumatic manipulator drives , control signals are sent to these devices , causing motion of the robot .For each robotic system , power is required to operate the manipulator . This power can be developed from either a hydraulic power source , a pneumatic power source , or an electric power source , These power sources are part of the total components of the robotic work cell .機器人文章出處機械制造專業英語 主編章躍 節選自第 21 課機器人工業機器人是在生產環境中用以提高生產效率的工具,它能做常規乏味的裝配線工作,或能做那些對于工人來說是危險的工作,例如第一代工業機器人是用來在核電站中更換核燃料棒,如果人去做這項工作,將會遭受有害射線的輻射。工業機器人亦能工作在裝配線上將小元件裝配到一起,如將電子元件安放在電路印刷板,這樣,工人就能從這項乏味的常規工作中解放出來。機器人也能按程序要求用來拆除炸彈,輔助殘疾人,在社會的很多應用場合下履行職能。機器人可以認為是將手臂末端的工具、傳感器和手爪移動到程序指定位置的一種機器。當機器人到達位置后,它將執行某種任務。這些任務可以是焊接、密封、機器裝料、拆裝以及裝配工作。除了編程以及系統的開停之外,一般來說這些工作可以在無人干預下完成。如下敘述的是機器人系統基本術語1.機器人是一個可編程、多功能的機械手,通過給要完成的不同任務編制各種動作,它可以運動零件、材料、工具以及特殊裝置。這個基本定義引導出后續段落的其他定義,從而描繪出一個完整的機器人系統。2.預編程位置點是機器人為完成工作而必須跟蹤的軌跡。在某些位置點上機器人將停下來做某些操作,如裝配零件、噴涂油漆或者焊接。這些預編程點貯存在機器人的貯存器中,并為后續的連續操作所調用,而且這些預編程點像其他程序數據一樣,可在日后隨工作需要而變化。因且,正是這種可編程的特征,一個工業機器人很像一臺計算機,數據可以在這里儲存、后續調用與編輯。3.機械手是機器人的手臂,它使機器人能彎屈、延伸和旋轉,提供這些運動的是機械手的軸,亦是所謂的機械手的自由度。一個機械人能有 3-16 軸,自由度一詞總是與機器人軸數相關。4.工具和手爪不是機器人自身組成部分,但它們是安裝在機器人手臂末端的附件。這些連在機器人手臂末端的附件可使機器人抬起工件、點焊、刷漆、電焊弧、鉆孔、打毛刺以及根據機器人的要求去做各種各樣的工作。5.機器人系統還可以控制機器人的工作單元,工作單元是機器人執行任務所處的整體環境,該單元包括控制器、機械手、工作平臺、安全保護裝置或者傳輸裝置。所有這些為保證機器人完成自己任務而必需的裝置都包括在這一工作單元中。另外,來自外設的信號與機器人何時裝配工作、取工件或放工件到傳輸裝置上。機器人系統有三個基本不見機械手、控制器和動力源。A.機械手機械手做機器人系統中粗重工作,它包括兩個部分機構和附件,機械手也有聯接附件基座,如下圖所示一機器人基座與附件之間的聯接情況。機械手基座通常固定在工作區域的地基上,有時基座也可以移動,在這種情況下基座安裝在導軌或者軌道上,允許機械手從一個位置移動到另外一個位置。正如前面所提到的那樣,附件從機器人基座上延伸出來,附件就是機器人的手臂,它可以是直線型,也可以是軸節型手臂,軸節型手臂也是大家所知的關節型手臂。機械臂使機械手產生各軸的運動。這些軸連在一個安裝基座上,然后再練到托架上,托架確保機械手停留在某一位置。在手臂的末端上,連接著手腕,手腕由輔助軸和手腕凸緣組成,手腕是讓機器人用戶在手腕凸緣上安裝不同工具來做不同種工作。機器手的軸使機械手在某一區域內執行任務,我們將這個區域為機器人的工作單元,該區域的大小與機械手的尺寸相對應,一個典型裝配機器人的工作單元。隨著機器人機械結構尺寸的增加,工作單元的范圍也必須相應增加。機械手的運動由執行元件或驅動系統來控制。執行元件或驅動系統允許各軸在工作單元內運動。驅動系統可用電氣液壓和氣壓動力,驅動系統所產生的動力經機構轉變為機械能,驅動系統與機械傳動鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機械傳動鏈驅動著機器人的各軸。B.控制器機器人控制器是工作單元的核心。控制器儲存著預編程序供后續條用、控制外設,及與廠內計算機進行通訊以滿足產品經常更新的需要。控制器用于控制機械手運動和在工作單元內控制機器人外設。用戶可通過手持的示教盒將機械手運動的程序編入控制器。這些信息儲存在控制器的存儲器中以備后續調用,控制器存儲了機器人系統的所有編程數據,它能存儲幾個不同的程序,并且所有這些程序均能編輯。控制器要求能夠在工作單元內與外設進行通信。例如控制器有一個輸入端,它能標識某個機加工操作何時完成。當該加工循環完成后,輸入端接通,告訴控制器定位機械手以便能抓取以加工工件,隨后機械手抓取一未加工工件,將其放置在機床上。接著,控制器給機床開始加工的信號。控制器可以由根據時間順序而步進的機械式輪轂組成,這種類型的控制器可用在非常簡單的機械系統中。用于大多數機器人系統中的控制器代表現代電子學的水平,是更復雜的裝置,即它們是由微處理器操縱的。這些微處理器可以是 8 位,16 位或 32 位處理器。它們可以使得控制器在操作工程中顯得非常柔性。控制器能通過通信線發送電信號,使它能與機器手各軸交流信息,在機器人的機械手和控制器之間的雙向交流信息可以保持系統操作和位置經常更新,控制器亦能控制安裝在機器人手腕上的任何工具。控制器也有與廠內各計算機進行通信的任務,這種通信聯系使機器人成為計算機輔助制造(CAM)系統的一個組成部分。存儲器。基于微處理器的系統運行時要與固態的存儲裝置相連,這些存儲裝置可以是磁泡,隨機存儲器、軟盤、磁帶等。每種記憶存儲裝置均能貯存、編輯信息以備后續調用和編輯。C.動力源動力源是給機器人和機器手提供動力的單元。傳給機器人系統的動力源有兩種,一種是用于控制器的交流電,另一種是用于驅動機械手各軸的動力源,例如,如果機器人的機械手是由液壓和氣壓驅動的,控制信號便傳送到這些裝置中,驅動機器人運動。對于每一個機器人系統,動力是用來操縱機械手的。這些動力可來源于液壓動力源、氣壓動力源或電源,這些能源是機器人工作單元整體的一部分。PLC technique discussion and future developmentAlong with the development of the ages, the technique that is nowadays is also gradually perfect, the competition pla
編號:20190609175858267    類型:共享資源    大小:2.56MB    格式:ZIP    上傳時間:2019-06-09
關 鍵 詞:
r175 柴油機 機體 加工 自動 線上 多功能 液壓 機械手 設計 全套 含有 cad 圖紙 三維 建模










  • 隧道畢業設計-全長168米短隧道分離式獨立雙洞(計算書16頁CAD圖3張)隧道畢業設計-全長168米短隧道分離式獨立雙洞(計算書16頁CAD圖3張)

  • 鋼結構課程畢業設計(計算書和圖紙)鋼結構課程畢業設計(計算書和圖紙)

  • 隧道畢業設計-設計速度350kmh鐵路工程軟土地基路堤的設計與施工(文字部分83頁CAD圖3張)隧道畢業設計-設計速度350kmh鐵路工程軟土地基路堤的設計與施工(文字部分83頁CAD圖3張)

  • 鋼結構廠房畢業設計-某十層鋼結構住宅樓設計(全套建筑圖、結構圖、計算書)鋼結構廠房畢業設計-某十層鋼結構住宅樓設計(全套建筑圖、結構圖、計算書)

  • 隧道畢業設計-1145米長路Ⅱ級隧道11m凈高5m公路Ⅱ級(計算書59頁CAD圖17張)隧道畢業設計-1145米長路Ⅱ級隧道11m凈高5m公路Ⅱ級(計算書59頁CAD圖17張)

  • 道路畢業設計-路線全長1711.76米紅線寬度為30米按城市次干道標準設計(設計說明書61頁土方量計算表CAD圖紙25張)道路畢業設計-路線全長1711.76米紅線寬度為30米按城市次干道標準設計(設計說明書61頁土方量計算表CAD圖紙25張)

  • 鋼結構廠房畢業設計-某休閑娛樂中心設計(全套建筑圖、結構圖、計算書)鋼結構廠房畢業設計-某休閑娛樂中心設計(全套建筑圖、結構圖、計算書)

  • 鋼結構廠房畢業設計-某鋼結構廠房全套設計(全套圖紙及計算書)鋼結構廠房畢業設計-某鋼結構廠房全套設計(全套圖紙及計算書)

  • 隧道畢業設計-地下雙層島式車站總長188.4 m總寬度20.7 m(計算書、施組、CAD圖10張)隧道畢業設計-地下雙層島式車站總長188.4 m總寬度20.7 m(計算書、施組、CAD圖10張)

  • 鋼結構廠房畢業設計-某一層鋼結構廠房設計(全套建筑圖、結構圖、計算書)鋼結構廠房畢業設計-某一層鋼結構廠房設計(全套建筑圖、結構圖、計算書)

  • 鋼結構廠房畢業設計-某鋼結構課程設計(全套圖紙及計算書)鋼結構廠房畢業設計-某鋼結構課程設計(全套圖紙及計算書)

  • 道路畢業設計-路基寬度為33.0m雙向6車道高速公路路基路面的綜合設計(計算書、工程量清單、CAD圖紙)道路畢業設計-路基寬度為33.0m雙向6車道高速公路路基路面的綜合設計(計算書、工程量清單、CAD圖紙)

  • 隧道畢業設計-全長2276m人字坡形單洞雙向隧道山嶺重丘二級公路(計算書、CAD圖)隧道畢業設計-全長2276m人字坡形單洞雙向隧道山嶺重丘二級公路(計算書、CAD圖)

  • 門式剛架輕型鋼結構工業廠房畢業設計(含圖紙、計算書)門式剛架輕型鋼結構工業廠房畢業設計(含圖紙、計算書)

  • 鋼結構廠房畢業設計-某五層鋼結構賓館設計(全套建筑圖、結構圖、計算書)鋼結構廠房畢業設計-某五層鋼結構賓館設計(全套建筑圖、結構圖、計算書)

  • 隧道畢業設計-分離式單向行駛兩車道隧道左線全長298m(計算書90頁CAD圖13張)隧道畢業設計-分離式單向行駛兩車道隧道左線全長298m(計算書90頁CAD圖13張)

  • 道路畢業設計-重慶交通大學土木工程道路設計(開題報告設計說明書圖紙,預算)道路畢業設計-重慶交通大學土木工程道路設計(開題報告設計說明書圖紙,預算)

  • 鋼結構廠房全套畢業設計(全套建筑圖、結構圖、計算書)鋼結構廠房全套畢業設計(全套建筑圖、結構圖、計算書)

  • 鋼結構廠房畢業設計-某三層鋼結構百貨大樓設計(全套建筑圖、結構圖、計算書)鋼結構廠房畢業設計-某三層鋼結構百貨大樓設計(全套建筑圖、結構圖、計算書)

  • 道路畢業設計-路面寬度24.5m行車道4條說明及CAD圖(總說明書、路線、路基及排水、路面及排水、小橋、涵洞)道路畢業設計-路面寬度24.5m行車道4條說明及CAD圖(總說明書、路線、路基及排水、路面及排水、小橋、涵洞)

  • 2019年八一建軍節活動方案(匯編)2019年八一建軍節活動方案(匯編)

  • 精品推薦



    關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

    網站客服QQ:3392350380    裝配圖網文庫上傳用戶QQ群:460291265   

    [email protected] 2019-2021  zhuangpeitu.com 裝配圖網版權所有  


    毕尔巴鄂足球峰会 聚宝盆返利网 178彩票兼职靠谱吗 时时彩万位6码100%500元倍投方案 倍投技巧9期 福彩3d位选投注金额表 至尊炸金花百人场规律 重庆时时彩官方网站 极速6合开奖计划 pk10计划软件下载 北京pk走势图 娱乐传奇 吉林时时网上购买火车票 北京pk赛车20分钟一期 加州f1a赛车彩票计划